Тайна крещенской воды

Предыдущая13141516171819202122232425262728Следующая

Многие из Вас знают, хотя много и тех кто сомневаются в этом, что вода набранная из природных источников в день Крещения (19 января) обладает рядом замечательных свойств.
Например, она может простоять, не испортившись очень долго. Помимо, так сказать химических способов сделать эту воду устойчивой к процессу протухания, таких как внесение в неё небольшого количества ионов серебра (священнослужители при обряде освящения держат некоторое время в воде серебряные кресты), есть на мой взгляд и другая , если так можно выразиться информационная причина такого аномального поведения святой воды взятой на крещение.
Обратите внимание, что праздник крещения приходится на самый пик зимних морозов, что, конечно же, тоже значительно сокращает количество вредных микроорганизмов в воде. Однако и это, на мой взгляд, не самое главное.
Основным моментом, оказывающим воздействие на свойства воды, является воздействие мыслей человека.
Выше, в этой главе, мы описали три различных варианта молекулы воды. Так вот, под воздействием мыслей человека, структура воды , то есть расположение различных видов её молекул, принимает вид очень близкий к структуре, существующей у воды в её кристаллическом состоянии, то есть близкой к структуре льда. Связь в молекуле может и не меняться, изменяется расположение молекул относительно друг друга.
Это и является объяснением такой продолжительной способности воды сохранять свою свежесть. Мы ведь не удивляемся, что лёд может годами существовать в Антарктиде, или месяцами в нашем холодильнике , и при этом не протухать.
Напомню, что организм человека на две трети состоит из воды. Следовательно, если вы употребили внутрь или облились Крещенской водой, то вода составляющая ваш организм начинает "воспринимать" структуру вновь употреблённой воды, и перестраивать свою структуру подобно ей.
Но как мы помним, структура Крещенской воды близка структуре льда, и, следовательно, в ней болезнетворные бактерии и вирусы чувствуют себя не комфортно. Они стараются покинуть организм, а это оказывает на него положительное воздействие.
Многие, конечно, слышали о наговорах на воду. Я думаю, что механизм их действия точно такой же. При наговоре воздействие может быть не только положительным, но , к сожалению, и отрицательным.
Подробности информационного воздействия мыслей на вещество можно посмотреть на странице энергоинформационное поле.

Ковалентная химическая связь. Ее характерные особенности: насыщаемость, полярность и направленность. Определение ковалентности элементов по МВС. Рассмотреть на примере 26 и 35 элементов.

Ковалентная связь (атомная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.



Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.

Направленность связи обусловливает молекулярное строение веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.

Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Электроны тем подвижнее, чем дальше они находятся от ядер.

Метод валентных связей (ВС)

Правило октета Льюиса. В 1916 г. английский ученый Д.Льюис предположил, что химическая связь образуется в результате обобществления электронов, принадлежащих до образования связи разным атомам. Согласно правилу октета Льюиса внешняя электронная оболочка каждого из атомов, образующих химическую связь, должна иметь электронную конфигурацию благородного газа (за исключением гелия), т.е. атом должен иметь во внешней оболочке восемь электронов.

В зависимости от числа обобществленных электронных пар связь может быть одинарной, двойной или тройной:

В формулах Льюиса химическая связь изображают парой точек, соответствующих двум электронам. Чаще химическую связь изображают черточками: Br−Br, O=O, N≡N.

Разработанная на этой основе теория химической связи получила название метода валентных связей (метод ВС). В основе метода ВС лежат следующие положения:

1) Ковалентная связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

2) Ковалентная связь тем прочнее, чем в большей степени перекрываются электронные облака.

Комбинации двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.

3.2.4 Гибридизация атомных орбиталей

Для объяснения отличия валентных углов в молекулах H2O (104,5°) и NH3 (107,3°) от 90° следует принять во внимание, что устойчивому состоянию молекулы отвечает ее геометрическая структура с наименьшей потенциальной энергией. Поэтому при образовании молекулы форма и взаимное расположение атомных электронных облаков * изменяется по сравнению с их формой и расположением в свободных атомах. В результате достигается более полное перекрывание орбиталей * при образовании химической связи. Такая деформация электронных облаков требует затраты энергии, но более полное перекрывание приводит к образованию более прочной связи, и в целом получается выигрыш в энергии. Этим и объясняется возникновение гибридных орбиталей.

Форма гибридной орбитали может быть определена математически путем сложения волновых функций * исходных орбиталей:

В результате сложения волновых функций s- и p-орбиталей с учетом их знаков оказывается, что плотность электронного облака (величина |y|2) по одну сторону от ядра повышена, а по другую – понижена.

В целом процесс гибридизации включает следующие этапы: возбуждение атома *, гибридизация орбиталей возбужденного атома, образование связей с другими атомами. Затраты энергии на первые два этапа компенсируются выигрышем энергии при образовании более прочных связей с гибридными орбиталями. Тип гибридизации определяется типом и количеством участвующих в ней орбиталей.

Ниже рассмотрены примеры различных видов гибридизации s- и p-орбиталей.

Гибридизация одной s- и одной p-орбитали (sp-гибридизация) происходит, например, при образовании галогенидов бериллия, цинка, кадмия и ртути. Атомы этих элементов в нормальном состоянии имеют во внешнем слое два спаренных s-электрона. В результате возбуждения один из s-электронов переходит в p-состояние – появляется два неспаренных электрона, один из которых s-, а другой p-электрон. При образовании химической связи * эти две различные орбитали преобразуются в две одинаковые гибридные орбитали (sp-орбитали), направленные под углом 180° друг к другу, – две связи имеют противоположное направление (рисунок 3.5).

Рисунок 3.5 – Перекрывание sp-орбиталей бериллия и p-орбиталей хлора в молекуле BeCl2

Экспериментальное определение структуры молекул BeГ2, ZnГ2, CdГ2, HgГ2 (Г–галоген) показало, что эти молекулы являются линейными, и обе связи металла с атомами галогена имеют одинаковую длину.

Гибридизация одной s- и двух p-орбиталей (sp2-гибридизация) имеет место, например, при образовании соединений бора. Возбужденный атом бора обладает тремя неспаренными электронами – одним s-электроном и двумя p-электронами. Из трех орбиталей образуются три эквивалентные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120° друг к другу (рисунок 3.6). Действительно, как показывают экспериментальные исследования, молекулы таких соединений бора, как BГ3 (Г-галоген), B(CH3)3 – триметилбор, B(OH)3 – борная кислота, имеют плоское строение. При этом три связи бора в указанных молекулах имеют одинаковую длину и расположены под углом 120°.

Рисунок 3.6 – Перекрывание sp2-орбиталей бора и p-орбиталей хлора в молекуле BCl3

Гибридизация одной s- и трех p-орбиталей (sp3-гибридизация) характерна, например, для углерода и его аналогов – кремния и германия. В этом случае четыре гибридные sp3-орбитали расположены под углом 109°28¢ друг к другу; они направлены к вершинам тетраэдра (в молекулах CH4, CCl4, SiH4, GeBr4 и др.). Валентные углы в молекулах H2O (104,5°) и NH3 (107,3°) не точно соответствуют взаимному расположению “чистых” p-орбиталей (90°). Это обусловлено некоторым вкладом s-электронов в образование химической связи. Такой вклад есть не что иное, как гибридизация. Валентные электроны в этих молекулах занимают четыре орбитали, которые близки к sp3-гибридным. Незначительное отличие валентных углов от тетраэдрических 109°28¢ объясняется тем, что гибридизация в данном случае является неполной.

Во многих молекулах центральный атом не подвергается гибридизации. Так, валентные углы в молекулах H2S, PH3 и др. близки к 90°, т.е. образование связей происходит с участием “чистых” p-орбиталей, расположенных под прямым углом друг к другу.

КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ

КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ вещества - жидкое и твердое агрегатные состояния вещества. Переход вещества из газообразного в конденсированное состояние называется конденсацией.


6091688657074335.html
6091743035508564.html
    PR.RU™